Henniker Scientific: Discover the Advantage of QPS Stability

Our Newest Quadrupole Power Supplies (QPS) deliver unrivalled long term stability. Here we demonstrate two of the most crticial performance factors for Quadrupole Power Supplies:

  • Mass Stability
  • Resolution Stability
Mass Stability
Henniker Scientific QPS Stability Article Mass Stabiliy Graph

Mass stability is probably the most noted performance factor for quadrupole power supplies. Typical specifications for mass drift are 0.1 Da over 48 hours. In order to demonstrate exceptional mass stability performance, we used a QPS operating at 2.9MHz to drive a 19mm Tri-filter QMF configured as part of a MAX instrument having a mass range of 1 to 50 Daltons.

Data was collected continuously over a 76 hour period. Figure 1 is an overlay of 19 scans from the data set taken at the end of every four hours. The peak position movement is measured to be just 0.0008 Daltons, which means that it is essentially unmoved over the entire 76 hour operating period.

Henniker Scientific QPS Stability Article Peak Performance Graph

Peak Position Does Not Change Over 76 Hours

In order to determine the limits to which mass drift can be detected visually, we used the programmable mass position command in Extrel’s “Merlin” software application to shift the peak position until the change was detectable. Figure 2 shows a peak that was moved just 0.01 Da using the Merlin Automation Data System.

Visually, the mass drift is still barely perceptible and is in fact a factor of x10, better than most commercial specifications. Looking more closely at the exploded portions of the plot, which show the peak edge at approximately half the maximum height, it can be seen that the previous data from the 76 hours of continuous scanning fits well within the forced shift. The mass drift of the QPS is visually undetectable.

Henniker Scientific QPS Stability Article table one
Warm-up

All quadrupole power supplies take some time to stabilize, often referred to as a “warm-up”. The time to warm up from a cold start is a key performance factor, and is another good indicator of quality power supply design.

As a test of start-up mass drift, we compared the mass position at the end of a 4 day experiment to the mass position from a cold start, and for various times in between (see Table 1).

The initial start-up mass position was less than 0.06 Da from the mass position 4 days later, demonstrating the exceptional mass stability, once again.

Henniker Scientific QPS Stability Article Resolution Graph
Resolution Stability Yields Excellent Repeatability

Another key performance factor is the resolution stability. This is important as it affects the repeatability of the ion intensity measurement at any nominally the same set of experimental conditions. In order to demonstrate the impact of resolution stability, Figure 3 shows a series of peaks where the programmable resolution command in Merlin was used to transition a peak from low resolution to high resolution.

As the resolution is increased, the peak height becomes more and more dependent on the resolution. The resolution change between each peak is 0.5%. For the first 0.5% resolution change, the maximum intensity for the peak changes by over 4%. It’s clear that a repeatable peak height also requires extremely high resolution stability.


Flexible enough to drive our range of application specific Quadrupole Mass Spectrometers, as well as any of the standalone quadrupole mass filters (QMF), Henniker QPS products deliver performance.

Henniker Scientific QPS Stability MS

< | >